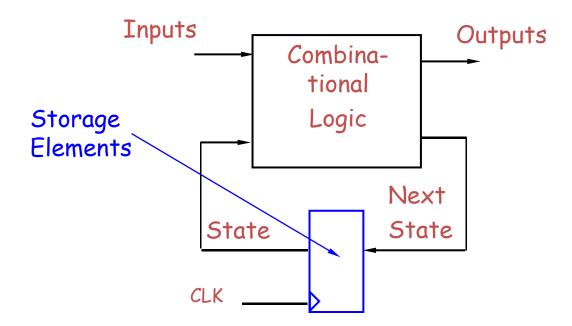
Sequential Synchronous Circuit Analysis

✓ General Model

- Current State at time (t) is stored in an array of flip-flops.
- Next State at time (t+1) is a Boolean function of State and Inputs.
- Outputs at time (t) are a Boolean function of State(t) and (Mealy) of Inputs (t).



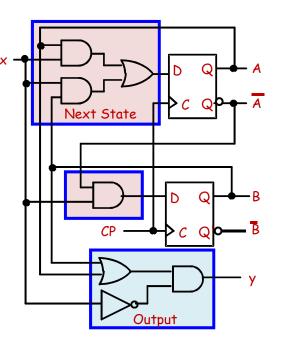
Example 1: Analysis

- ✓ Input: x(t)
- ✓ Output: y(t)
- ✓ State: (A(t), B(t))
- ✓ What is the Output Function?

 $\gamma(\dagger) = \overline{x}(\dagger)(B(\dagger) + A(\dagger))$

✓ What is the Next State Function?

A(++1) = A(+)x(+) + B(+)x(+)B(++1) = $\overline{A}(+)x(+)$



State Table Characteristics

- State table a multiple variable table with the following four sections:
 - Present State the values of the state variables for each allowed state.
 - Input the input combinations allowed.
 - Next-state the value of the state at time (t+1) based on the present state and the input.
 - Output the value of the output as a function of the present state and (Mealy) the input.
- ✓ From the viewpoint of a truth table:
 - the inputs are Input, Present State
 - and the outputs are Output, Next State

Example 1: Alternate State Table

$$A(t+1) = A(t) \times (t) + B(t) \times (t)$$

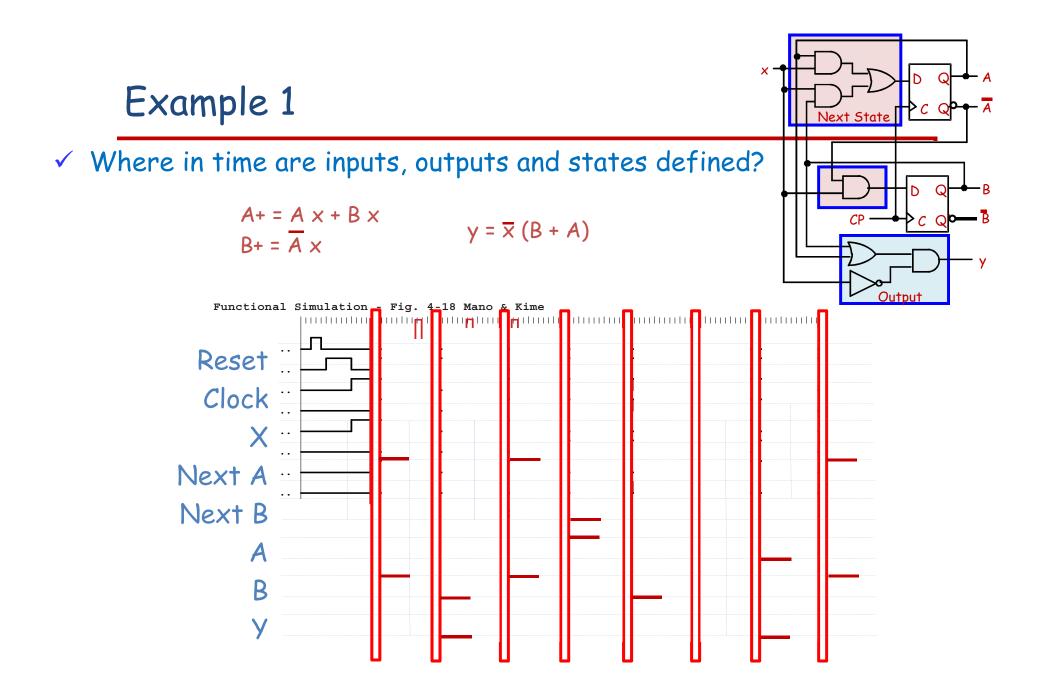
B(t+1) = $\overline{A}(t) \times (t)$
y(t) = $\overline{x}(t)$ (B(t) + A(t))

Present State		Input	Input State	
A B	x	A B	y	
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1 1 1 1		
1	1	0		
1	1	lenn1 of th		

The time sequence of inputs, outputs, and flip-flop states can be enumerated in a state table (sometimes called transition table).

 $A + = A \times + B \times$ $B + = \overline{A} \times$ $y = \overline{x} (B + A)$

Present State	Next S	tate	Outpu	t
	<i>x</i> = 0	x = 1	<i>x</i> = 0	<i>x</i> = 1
AB	AB	AB	у	у
00	00	01	0	0
01	00	11	deing 1 puls	0
10	00	10	1	0
11	00	10	1	0



State Diagrams

- ✓ The sequential circuit function can be represented in graphical form as a state diagram with the following components:
 - A circle with the state name in it for each state
 - A directed arc from the Present State to the Next State for each state transition
 - A label on each directed arc with the Input values which causes the state transition, and
 - A label:
 - On each circle with the output value produced:
 Moore type

<u>or</u>

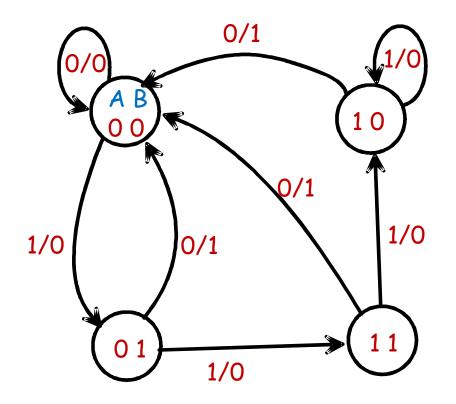
 On each directed arc with the output value produced: Mealy type.

Example 1: State Diagram

- ✓ Diagram gets confusing for large circuits
- ✓ For small circuits, usually easier to understand than the state table

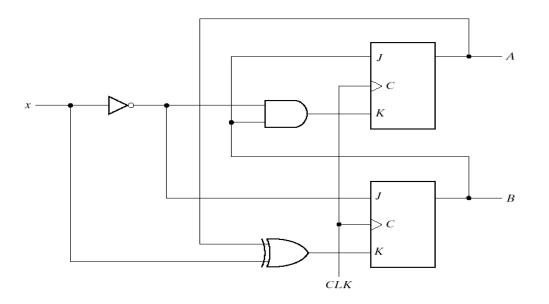
$$A + = A \times + B \times B + = \overline{A} \times A \times A$$
$$Y = \overline{X} (B + A)$$

Present State	Next	State	Output		
	<i>x</i> = 0	x = 1	<i>x</i> = 0	x = 1	
AB	AB	AB	у	у	
00	00	01	0	0	
01	00	11	Sainel puls	0	
10	00	10	1	0	
11	00	10	1	0	



1/0 : means input x = 1
 output y = 0

Analysis with JK Flip-Flops



$$J_{A} = B \qquad K_{A} = B \overline{x}$$
$$J_{B} = \overline{x} \qquad K_{B} = \overline{A} \times + A \overline{x} = A \oplus x$$

Moore

8

Analysis with JK Flip-Flop

✓ The circuit can be specified by the flip-flop input equations:

$$J_{A} = B \qquad K_{A} = B \overline{X}$$
$$J_{B} = \overline{X} \qquad K_{B} = \overline{A} \times + A \overline{X} = A \oplus X$$

Present State		Input	Input State		all and and free	Flip-Flop Inputs			
A	В	x	A	В	topoli ipir s	JA	KA	JB	K
0	0	0			the state of				
0	0	1			CLA SECTION				
0	1 1 De	0			shion the d				
0	1	A CONTRACT			densburge				
1	0	0			State Bark				
1	0	petterl magos			The output				
1	1	0							
1	1	1							

Analysis with JK Flip-Flops

$$A + = J\overline{A} + \overline{K}A$$
 $J_A = B$ $K_A = B \overline{X}$ $B + = J\overline{B} + \overline{K}B$ $J_B = \overline{X}$ $K_B = \overline{A} \times + A \overline{X} = A \oplus X$

✓ Substituting the values of J_A and K_A from the input equations, we obtain the state equation for A:

 $A = B\overline{A} + (\overline{B\overline{x}})A = \overline{A}B + A\overline{B} + Ax$

✓ The state equation provides the bit values for the column under next state of A in the state table. Similarly, the state equation for flip-flop B can be derived from the characteristic equation by substituting the values of J_B and K_B :

$$\mathsf{B} = \overline{\mathsf{x}}\overline{\mathsf{B}} + (\overline{\mathsf{A} \oplus \mathsf{x}})\mathsf{B} = \overline{\mathsf{B}}\overline{\mathsf{x}} + \mathsf{A}\mathsf{B}\mathsf{x} + \overline{\mathsf{A}}\mathsf{B}\overline{\mathsf{x}}$$

Analysis with JK Flip-Flops

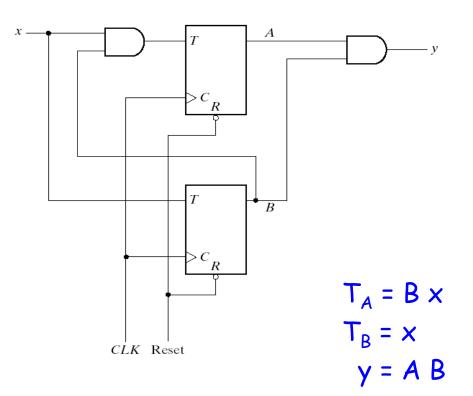
The state diagram of the sequential circuit is: $A = B\overline{A} + (\overline{B\overline{X}})A = \overline{A}B + A\overline{B} + A\overline{X}$

 $\mathsf{B} = \overline{\mathsf{x}}\overline{\mathsf{B}} + (\overline{\mathsf{A} \oplus \mathsf{x}})\mathsf{B} = \overline{\mathsf{B}}\overline{\mathsf{x}} + \mathsf{A}\mathsf{B}\mathsf{x} + \overline{\mathsf{A}}\mathsf{B}\overline{\mathsf{x}}$

Present State				Next State		
A	В	x	A	В		
0	0	0				
0	0	1				
0	1 mbc	0				
0	1 1	a contrational				
1	0	0				
1	0	petter I mago				
1	1	0				
1	1	1				

Analysis With T Flip-Flops

✓ Characteristic equation:
 Q = T⊕ Q



Moore

Analysis With T Flip-Flops

 Consider the previous sequential circuit. It has two flip-flops A and B, one input x, and one output y. It can be described algebraically by two input equations and an output equation:

 $T_{A} = B \times$ $T_{B} = \times$ y = A B $A = (\overline{Bx})A + (Bx)\overline{A}$ $= A\overline{B} + A\overline{x} + \overline{A}B \times$ $B = x \oplus B$

Present State		Input	1.00	Next State		Output
A	B	LCXCU	A	B	D EQ	y
0	0	0	195		Siles	1
0	0	1				
0	1	0				
0	1	nasio oli enuru				
1	0	0				
1	0	as see 1 mini of				
1	1	0				
1	1	1				

Analysis With T Flip-Flops

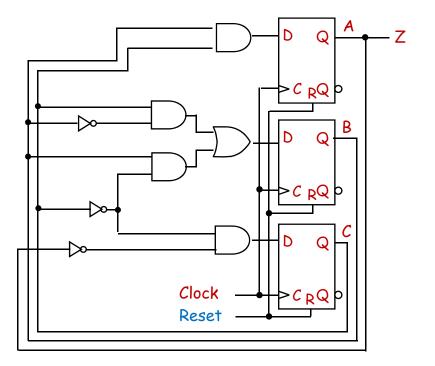
✓ Characteristic equation:
 Q(t + 1) = T ⊕ Q

Present State				ate	Output
A	B	LCXCU	A	B	TR SE
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	1	0
0	1	unsin of onurin	1	0	0
1	0	0	1	0	0
1	0	as see 1 anial ci	1	1	0
1	1	0	1	1	pollepo
1	1	1	0	0	1

Sequential Circuit Analysis

 \checkmark Initialization: reset to (0, 0, 0)

✓ Equations:
A = B C
B = B C + B C
C = A C

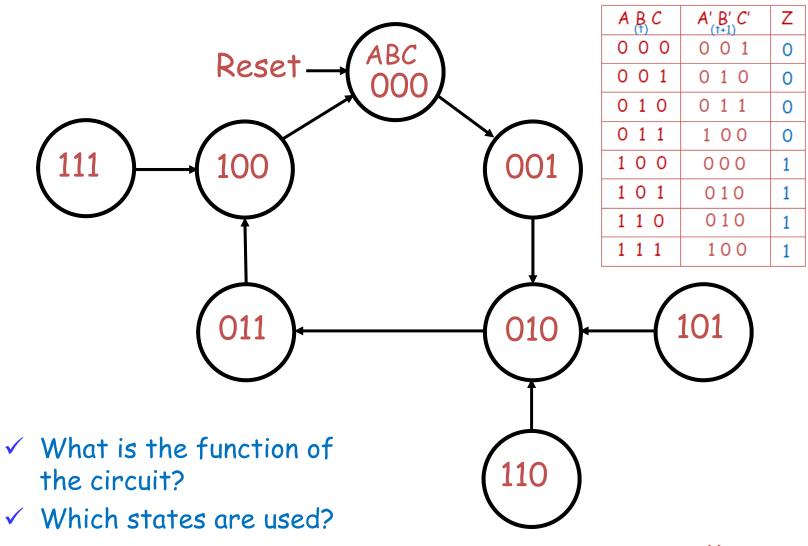


Moore

Example 2: State Table

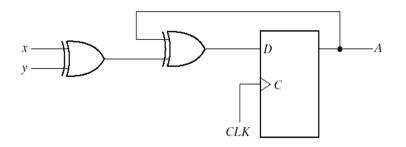
	ABC	$A'_{(++1)}B'_{(++1)}C'$	Ζ
	000	001	0
A = D C	001	010	0
$A = B C$ $B = \overline{B} C + B \overline{C}$	010	011	0
$C = \overline{A} \overline{C}$	011	100	0
	100	000	1
Z = A	101	010	1
	1 1 0	010	1
	1 1 1	100	1

Example 2: State Diagram



Moore

Analysis with D Flip-Flop



✓ The circuit we want to analyze is described by the input equation

 $\mathsf{D}_{\mathsf{A}} = \mathsf{A} \oplus \mathsf{X} \oplus \mathsf{Y}$

✓ The D_A symbol implies a D flip-flop with output A. The x and y variables are the inputs to the circuit. No output equations are given, so the output is implied to come from the output of the flip-flop.

Moore

Analysis with D Flip-Flop

The binary numbers under A x y are listed from 000 through 111.
 The next state values are obtained from the state equation

$$\mathsf{D}_{\mathsf{A}} = \mathsf{A} \oplus \mathsf{X} \oplus \mathsf{Y}$$

 \checkmark The state diagram consists of two circles-one for each state

Present state	Inputs	Next state
Α	хy	Α
0	0 0	
0	0 1	
0	1 0	
0	1 1	
1	0 0	
1	$0 \ 1$	
1	1 0	
1	1 1	

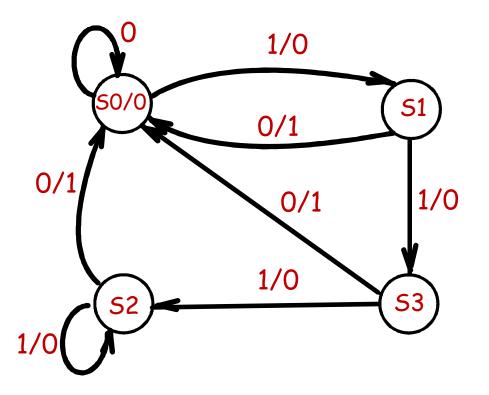
Equivalent State Definitions

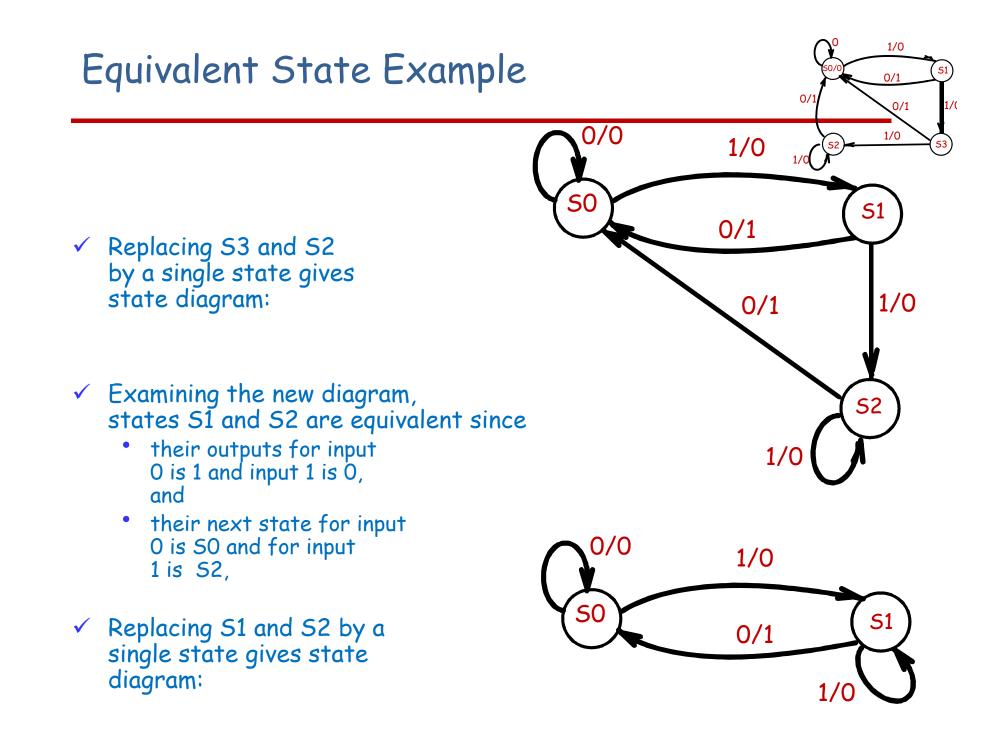
- Two states are equivalent if their response for each possible input sequence is an identical output sequence.
- Alternatively, two states are equivalent if their outputs produced for each input symbol is identical and their next states for each input symbol are the same or equivalent.
- Two states that are not equivalent are distinguishable

Equivalent State Example

✓ For states S3 and S2,

- the output for input 0 is 1 and input 1 is 0, and
- the next state for input 0 is S0 and for input 1 is S2.
- states S3 and S2 are equivalent.





Moore and Mealy Models

- Sequential Circuits or Sequential Machines are also called Finite State Machines (FSMs).
- ✓ Two formal models exist:
- Moore Model
 - Named after E.F. Moore
 - Outputs are a function ONLY of states
 - Usually specified on the states.

Mealy Model

- Named after G. H. Mealy
- Outputs are a function of inputs AND states
- Usually specified on the state transition arcs.

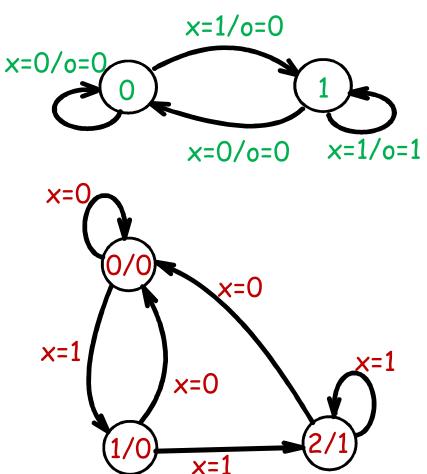
Moore and Mealy Example Diagrams & Tables

 Mealy Model State Diagram maps inputs and state to outputs

Present	Next	State	Out	put
State	x=0	×=1	x=0	x=1
0	0	1	0	0
1	0	1	0	1

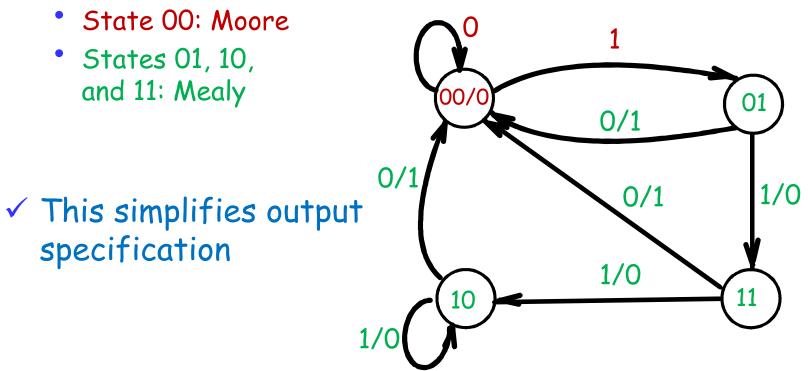
 Moore Model State Diagram maps states to outputs

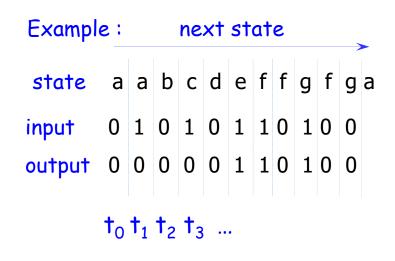
Present	Next	State	Output
State	x=0	x=1	
0	0	1	0
1	0	2	0
2	0	2	1

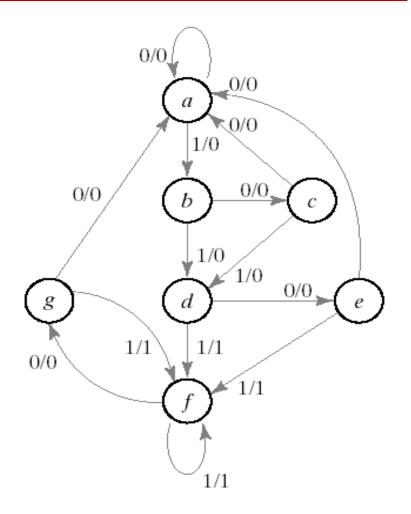


Mixed Moore and Mealy Outputs

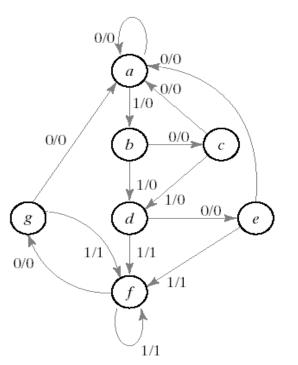
- ✓ In real designs, some outputs may be Moore type and other outputs may be Mealy type.
- Example: Figure can be modified to illustrate this







 We now proceed to reduce the number of states for this example. First, we need the state table; it is more convenient to apply procedures for state reduction using a table rather than a diagram. The state table of the circuit is listed in Table 5-6 and is obtained directly from the state diagram.



	Next	State	Out	put
Present State	<i>x</i> = 0	<i>x</i> = 1	<i>x</i> = 0	<i>x</i> = 1
a	a	Ь	0	0
b	с	d	0	0
c	а	d	0	0
d	e	f	0	1
e	a	f	0	1
f	g	f	0	1
8	a	f	0	1

States g and e are two such states: they both go to states a and f and have outputs of 0 and 1 for x=0 and x=1, respectively. Therefore, states g and e are equivalent and one of these states can be removed. The procedure of removing a state and replacing it by its equivalent is demonstrated in Table 5-7. The row with present g is removed and state g is replaced by state e each time it occurs in the next-state columns.

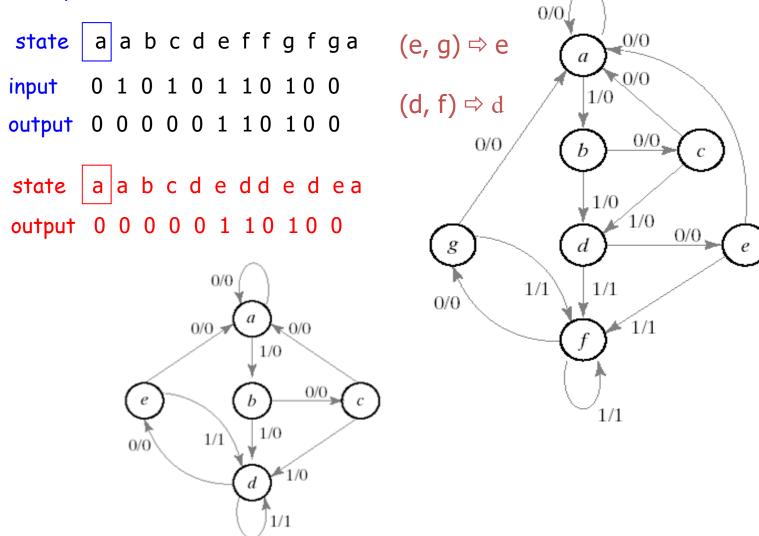
Present State	Next State		Output		
	<i>x</i> = 0	<i>x</i> = 1	<i>x</i> = 0	<i>x</i> = 1	
а	а	Ь	0	0	
b	с	d	0	0	
С	а	d	0	0	
d	e	f	0	1	
e	а	f	0	1	
f	e	f	0	1	

 Present state f now has next states e and f and outputs 0 and 1 for x=0 and x=1, respectively. The same next states and outputs appear in the row with present state d. Therefore, states f and d are equivalent and state f can be removed and replaced by d. The final reduced table is shown in Table 5-8. The state diagram for the reduced table consists of only five states.

Present State	Next State		Output		
	x = 0	<i>x</i> = 1	<i>x</i> = 0	<i>x</i> = 1	
a	a	Ь	0	0	
Ь	с	d	0	0	
physical co 2 conen	a	d	0	0	
diam dia	e	d	0	1	
e	а	d	0	1	

29

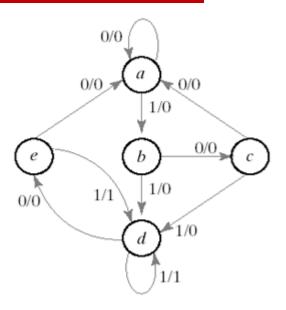
Example :



State Assignment

Table 5 10

Table 5-9 Three Possible Binary State Assignments				
State	Assignment 1 Binary pse	Assignment 2 udo Gray code	Assignment 3 One-hot	
a	000	000	00001	
b	001	001	00010	
с	010	011	00100	
d	011	010	01000	
е	100	110	10000	



Present State	Next State			Output	
	<i>x</i> = 0	<i>x</i> = 1	in L	<i>x</i> = 0	x = 1
000	000	001	B	0	0
001	010	011		0	0
010	000	011		0	0
011	100	011		0	1
100	000	011		0	1